Examples of Modeling Capabilities and Benefits for Rail Vehicles

- Optimize new wheel and rail profile designs
- Predict the effects of wheel/rail profile design on wear rates and rolling resistance
- Investigate and mitigate mechanisms that cause rolling contact fatigue and rail corrugations
- Evaluate new truck designs
- Improve car suspensions
- Optimize train operations for minimum energy consumption
- Evaluate new turnout designs
- Investigate derailments
- Calculation of in-train forces (buff/draft)
- Predict the effects of lubrication on train rolling resistance and wheel/rail forces
- Accelerate the research and development of new products

Transportation Technology Center, Inc. (TTCI) can accurately model the behavior of:
- Rail vehicles
- Track
- Components
- Wheel/Rail

Why Model?
- Find solutions to difficult technical questions
- Help in the development stage
 - Vehicles
 - Suspension systems
 - Track structures
 - Brake systems
- Reduce the cost of field testing

TTCI meets the needs of railroad industry by regularly:
- Developing
- Upgrading
- And improving the models
Modeling Tools

NUCARS®

- **Capabilities**
 - Evaluation of dynamic interaction between railway vehicles and track
 - Simulation of any type of railway vehicle
 - Locomotives
 - Freight Vehicles
 - Passenger and transit vehicles (multiple and articulated cars)
 - Simulation on any track geometry including turnouts, crossings, and tracks with guardrails
 - Accurate calculation of non-linear wheel/rail interaction forces
 - Simulation with non-linear effects
 - Springs and dampers
 - Air suspensions
 - Stick-slip friction
 - Traction
 - Braking
 - Includes a suite of pre and post processing programs for
 - Preparing vehicle and track inputs
 - Analyzing simulation results

- **Projects utilizing NUCARS® include**
 - Developing, evaluating, and optimizing new vehicle designs
 - Investigating and improving ride quality
 - Optimizing wheel and rail profile design
 - Evaluating wheel-rail interaction forces in turnout, crossing, and other track components

Railway Track Life Model (RTLTM)

- Program used for
 - Track and track component degradation analysis
 - Maintenance planning
 - Life-cycle cost analyses
- Software package includes models to predict
 - Rail wear rate
 - Rail defect rate

- Wood tie degradation
- Turnout life
- Ballast degradation rates
- Track roughness growth

Wheel/Rail Tolerance (WRTOL™) Software

- Assess wheel/rail contact parameters to make prediction for
 - Vehicle performance
 - Wheel/rail wear
 - Wear Index
- Comprehensive view of wheel/rail contact at system level
- Distinct feature is its ability to analyze the contact geometries of many
 - Wheelsets against a measured pair of rails (Rail Function in WRTOL™)
 - Many rails against a measured pair of wheels (Wheel Function in WRTOL™)

Simulation of Train Action to Reduce Cost of Operations (STARCO™)

- Predict and analyze the response from various power and brake commands
- May be used to evaluate the vehicle’s response to in-train forces
- Essential model for derailment prevention and analysis work
- Interactive program that is licensed to railways
- Enables the user to simulate track profiles and rolling stock specific to their railway
- Simulations integrate validated details of train air brake models
 - Nonlinear models of inter-car coupling characteristics
 - Locomotive traction/braking characteristics
 - Train resistance calculations
- Models designed for analysis of freight trains and associated longitudinal action
- Predict braking system response and stopping distances